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Rate concept and retarded master equations for dissipative tight-binding models
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Employing a “noninteracting-cluster approximation,” the dynamics of multistate dissipative tight-binding
models has been formulated in terms of a set of generalized retarded master equations. The rates for the various
pathways are expressed as power series in the intersite couplings. We apply this to the superexchange mecha-
nism, which is relevant for bacterial photosynthesis and bridged electron transfer systems. This approach
provides a general and unified description of both incoherent and coherent transport.

PACS number(s): 05.40.+j, 05.60.+w, 72.10.Bg

The problem of a tight-binding (TB) particle coupled to a
thermal bath has attracted a lot of recent attention. It is of
relevance for a great variety of transport processes in chem-
istry and physics. The simplest case of two states (popular-
ized as the spin-boson model) has been studied exhaustively,
both analytically [1] and numerically [2]. Of particular con-
ceptual importance was the development of a simple and
powerful approximation, the ‘““noninteracting-blip approxi-
mation” (NIBA) by Leggett et al. [1]. In this Rapid Commu-
nication, we present a generalization of this idea for the case
of a dissipative system with N arbitrary tight-binding sites,
based on a “noninteracting-cluster approximation” (NICA).

A multistate system with three states (N =3) is of special
interest for an understanding of the ultrafast primary electron
transfer (ET) in bacterial photosynthesis [3]. Nature designs
the photosynthetic reaction center with a bridging electronic
state between the donor and the acceptor chromophores and
optimizes the energetics and the influence of the surrounding
protein environment to produce a remarkable quantum yield
near unity. Describing the reaction center by a dissipative
three-state model, one may then ask for possible transfer
mechanisms between the relevant chromophores. Similarly,
in bridged ET reactions [4], the transfer of an electron from
a donor to an acceptor state occurs via a bridge. The bridge
may consist of one or several molecular units, and inclusion
of the solvent environment leads to a dissipative N-state sys-
tem [5]. Such systems are important in molecular electronics
[6], where one is interested in transferring electrons from
donor to acceptor under controlled conditions; e.g., by apply-
ing an external signal to the bridge. Our method allows for a
classification and calculation of possible transfer rates and
their bridge-length dependence [7]. Finally, multistate dissi-
pative TB models have also been used widely to study quan-
tum diffusion and other quantum transport processes in con-
densed phase systems [8].

For a qualitative understanding of the environmental ef-
fects on the TB dynamics, we study the Hamiltonian
H=Hy+H, (we put #=1) with
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where the matrix elements K; ; , ; describe tunneling between
successive wells, and E; are the binding energies. The dissi-
pative environment is modeled by a term H; describing a
harmonic oscillator bath and a bilinear coupling in the coor-
dinates of the bath and of the TB particle [8,9]. All environ-
mental effects are captured by the (twice-integrated) bath

correlation function [1]

a’ (= J(w) cosh[ wB/2]— cosh[ w(B/2—it)]
Q(t) = da’ 2 . )
wJo ® sinh[ wB3/2]
where B=1/kgT, a is the intersite distance, and J(w) is the

spectral density. In the classical limit (8—0), the bath is
completely described by one single parameter,

A=(a2/w)fmdw o (o),
0

which in the context of conventional electron transfer theory
is known as the bath reorganization energy [5]. The short-
time behavior for Q(¢) is Q(t)~(A/B)t*+iAt, whereas at
long times and for Ohmic damping, the typical behavior is

S(t)=ReQ(t)~t, R(t)=ImQ(t)~ const 2
for finite temperatures [1,8].

Suppose that at all times <0 the particle is held at the
site k with the bath having a thermal distribution. We then
wish to compute the probability P(n,t;k) for finding the
particle at site # as a function of time ¢>0 for this factoriz-
ing initial condition. In order to eliminate the bath degrees of
freedom, we employ Feynman-Vernon theory [10] which
represents the diagonal elements of the reduced density ma-
trix by the double path integral
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FIG. 1. The NXN states of the reduced density matrix in the
q-q’ plane for N=3. The diagonal states are labeled 1, ..., N.

P(n,t;k)=f-@qf@q’CXP(So[q,q’]+<I>[q,q’]), 3)

with S being the bare action and ® the influence functional.
All paths contributing to Eq. (3) are subject to the constraints
at the end points: g(0)=q’'(0)=ka, q(t)=q'(¢)=na.

The path integration in Eq. (3) can now be visualized as a
summation over all pairs of discrete paths on the g-g’ plane
shown in Fig. 1. It is convenient to introduce sum and dif-
ference coordinates,

x(t')=[q(¢')+q'(t")]/a, y(')=[q(t')—q'(t")]/a.

The diagonal states of the reduced density matrix are char-
acterized by y =0, and we label them as “states” 1 through
N (these should not be confused with the original sites of the
TB model). All paths contributing to Eq. (3) start in diagonal
state £ and end in diagonal state », making transitions along
the lattice in Fig. 1. The total number of transitions is nec-
essarily even; hence a path with 2m transitions at times
ti, ty, ..., ty, can be parametrized by two sets of

“charges” {X1,X2, - - - sXam} and {£1,&3, . . . €}, €ach
of which can take two possible values *1,

2m 2m
XY= x; 8t —t), y(e')=2 & 8(t'—1)),

j=1 j=1

in such a way that the path is confined to the N XN lattice in
Fig. 1 and has the end points fixed in the diagonal states k
and n.

For each transition from site j to j+1 on the path g
(q'), the bare action contributes a factor + (—) iK; ;.-
This results in a factor A, [{x;,¢;}], which is essentially a
product of 2m matrix elements K; ;, ;. The bare action also
gives a bias factor of

Bm[{ijf]}]=eXP “iz 7j (Eq,-_Eq;)
j

for any duration 7; the system spends in the (qj,qu ) off-
diagonal state along the path. Furthermore, the influence

functional takes the form [1]

2m -1

Om{x;,E}1=2 2 ES(—t)E+iER(—1)X;.

1=2 j=1

R. EGGER, C. H. MAK, AND U. WEISS 50

Summing over all orders m and all possible arrangements of
charges subject to the constraint that the path remain on the
NXN lattice, we finally obtain the exact formal expression

P(nt;k)= >,

m=|n—k|

XBm[{Xj’gj}] equ)m[{Xjaé:j}]’ (4)

i/?.m{tj}{)(%} Am[{X] 9§j}]

with the time-ordered integrations over the 2m flip times
defined as

I [’vm I:
f Vzm{fj}Ef dthj dts, j diy.
0 0 0

This expression is of formidable appearance and in general
does not allow for an exact evaluation.

To develop a useful approximation for the cumbersome
expression (4), we first introduce some terminology. The
&-charge configuration can be divided into subsets, each of
which we call a cluster. Each cluster is a neutral sequence of
contiguous ¢ charges which sum to zero. In the path picture,
a cluster corresponds to a segment of the path between two
successive visits of any diagonal states. Two consecutive
clusters are separated by a sojourn, which is the time the
system spends in a diagonal state. In this language, any path
is just a sequence of sojourns and clusters, where the ¢
charges within each cluster sum to zero.

In general, the influence functional ®,, couples the y
charges in each cluster with the ¢ charges in all other clus-
ters, and similarly the ¢ clusters are coupled to each other.
These interactions render the path summation intractable. To
simplify (4), we introduce an approximation which we call
the ‘“‘noninteracting-cluster approximation.” Within the
NICA, all intercluster interactions are neglected. Then the
integrations over the sojourn times in Eq. (4) appear as con-
volutions. Switching now to the Laplace transform
P(n,\;k), we find that each sojourn simply contributes a
factor of A !, while each cluster gives a factor whose pre-
cise value depends on the number of charges and their con-
figuration inside that particular cluster according to Eq. (4).
The sum of all clusters that begin in diagonal state i and end
in state j will then result in a cluster function h;;(\).

Similar to the NIBA, the NICA can be justified in several
physically distinct limits, and is expected to give accurate
results in most of the rest [1]. The NICA reduces to the
NIBA in the case N=2, as we shall show shortly. The central
argument for the neglect of the intercluster interactions
comes from the short-range character of the interactions be-
tween neutral objects like the clusters defined above. From
the typical long-time behavior (2), one can verify that the
intercluster interactions would indeed vanish because
2 §;=0 within each cluster. Consequently, the NICA is ex-
pected to be an excellent approximation for the important
case of Ohmic damping. This has been confirmed for the
three-state problem by numerically exact quantum Monte
Carlo simulations [11].

The NICA is able to describe quantum coherence as well
as relaxational behaviors, thus providing a framework of
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general applicability to open quantum systems. In addition,
the Fermi distribution can be described by the Fourier trans-
form of exp[ —Q(#)] with Q(¢) in the Ohmic form as it results
from the choice J(w)=(m/a®)w [8]. Hence, systems
coupled to fermionic baths, such as single electron tunneling
between nonsuperconducting leads, can also be treated by
this formalism [12].

In practical calculations, one can obtain expressions for
the cluster functions h;;(\) by expanding Eq. (4) in the tun-
neling matrix elements. This yields the power series

f d'rl’"f d'rbn_l
0 0

Xexp[ = N(7y+ -+ Top_1)] 2
{x; &}

><Am[{Xj ’gj}]Bm[{Xj ,§j}] equ)m[{Xj ’gj}]
&)

hij(\)=2Re 2,

m=li—j|

with the difference times 7;=¢;,,—¢;. The sum over the
charge configurations can be restricted to all paths in the
upper diagonal of the lattice, since the corresponding mirror
paths obtained by reflection across the diagonal are simply
their complex conjugates.

By virtue of the NICA, every path can be topologically
reduced to a sequence of clusters punctuated by sojourns. In
terms of the cluster functions defined previously, the sum of
all p-cluster diagrams contributing to P(n,\;k) is then given
by

1 1
P(p)(n:x;k)= 2 N hk,s —h : 'hs ,ny (6)
A A PN

S1525p

51:53°

where the sums run over all possible intermediate states
s=1,...,N. Defining the cluster matrix H(\) with matrix
elements £;;(\), we can rewrite Eq. (6) as a matrix product

1
P(”)(n,h;k)ﬁ\— {INTHO) P

Summing finally over all p yields

P(nJ\;k)=( @)

o)
\-T(N)/ )

which can be inverse transformed to give a set of generalized
(retarded) master equations

dP(n,t;k) < [t .
aP(n.6k) _ < fdt’r‘j,,(t—t’)P(j,t';k), ®)
dt j=1790

where ['(#) is the inverse transform of the rate matrix T'(\),
whose elements are given by the cluster functions

Fij()\)=hij()\), )
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and the initial conditions for (8) are P(n,t=0;k)=5,.
Based on a projection operator formalism, a similar set of
nonlocal master equations has been derived previously by
Hu and Mukamel [13].

From the formal series (5) for the cluster functions, we
observe that a symmetry relation holds for the cluster func-
tions, Zf; 1h;i(N)=0 for all i. This sum rule is valid order by
order in Eq. (5). Consequently, the diagonal rates can be
computed alternatively from I';;(A\)=—-Z;,.,I';(A), and
conservation of probability is fulfilled for Eq. (8) even when
only lowest-order rates are used.

For the spin-boson model, N=2, and the relevant rates
T';, and T',; consist of terms of order K2, only,

Ip(\)= ZKszeJ‘O dr e MTUEImEDT-O(n)

since for N=2, the system necessarily returns to a diagonal
state after every two transitions. One can easily check that
this golden rule expression leads directly to the familiar
noninteracting-blip approximation [1]. For N>2, terms of
higher orders in K, become important, because the system
is no longer required to return to a diagonal state after every
two transitions. For high enough temperatures or sufficiently
strong system-bath coupling, the relaxation is frequency-
independent, and Eq. (8) leads to the conventional local mas-
ter equations with rate matrix I'(A—07). In addition to the
usual stepwise rates, I' may contain important contributions
from non-nearest-neighbor rates due to nonvanishing higher-
order cluster matrix elements.

Now we apply this formalism to the dissipative three-state
problem in Fig. 1. If the system starts in site k=1 at t=0, the
efficiency of the transport is measured by P(3,¢;1). It is clear
from our analysis that there are two types of cluster func-
tions: (1) incoherent (sequential) clusters — these are I';,
and I',; which describe stepwise transport via site 2, and (2)
a coherent (superexchange) cluster — T {3 which describes a
direct transfer without any real population on the intermedi-
ate state [14].

The quantum-mechanical superexchange rate I" {3 can now
be expanded in orders of the tunneling matrix elements. To
lowest order, only four transitions are possible, with charge
configurations,

{gj}=(+s+)_a—)9

plus its complex conjugate. This corresponds to the path that
travels along the outer edges of the lattice from state 1 to
state 3. We obtain from Eq. (5)

{Xj}=(+9+a+s+)a

T13(\)=2K}K3;Re J' dridrydrie NNt
0

Xexp[@*(73) —Q( 7+ 73) — Q(71+ 7+ 73)
—0(m)—Q(7+ 1)+ Q(7)] exp[ —i(E,—E,)
X(1y— 1) —i(E3—E)(71+ 73)]. (10

In the high-temperature limit, one can take the short-time
expression for Q(t) given earlier, yielding the classical su-
perexchange rate (A—07)
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_ aB .« 1 _
I'3=K3, V'ﬂ(e ﬂF13—§[e AP+ +e~FF-1]. (11)

The effective superexchange coupling K5 coincides with the
matrix element given by Marcus [14]

K13=K K43/ OE, (12)

where SE=E,—(E{+E3)/2—A. The classical activation
free energy for the 1—3 step is [5]

F}=[E;—E,+4A]¥16A,
and the energies F . are defined by
F.=[8E+(E;—E;+4A)/2)%/4A.

The rate (11) is well defined for SE — 0, although the effec-
tive coupling K3 is not; the superexchange rate has a maxi-
mum for this resonant situation. However, in that case the
incoherent channel will cause an extremely efficient transfer
as well, albeit with large population buildup in state 2.
Therefore, the coherent contribution will only be important
for a high-lying bridge for which the incoherent channel is
energetically forbidden.

The above suggests that as long as the intermediate state
is not accessible by thermal or quantal fluctuations, the su-
perexchange rate (10) can be written in the form of the
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golden rule rate for an effective two-state system spanned by
states 1 and 3. The effective superexchange rate would then
be (A—0%)

F?€f=f<%3jﬁxdrexp[i(El—E,or-th(T)]. (13)

For a high-lying intermediate state, the dominant contribu-
tions to the triple integral (10) come from 7,,7;<7,. Lin-
earizing in 7; and 73, we then obtain directly Eq. (13) with
the effective two-state coupling matrix element (12). The
truncation of the dissipative three-state to a two-state system
becomes more accurate at lower temperatures due to the ab-
sence of thermal fluctuations populating the intermediate
state.

Finally, we stress that the retarded master equations (8)
provide a unified treatment of the various competing path-
ways for coherent and incoherent tunneling in open quantum
systems. This allows for a proper description of the turnover
between sequential and superexchange behavior.
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